Challenges and solutions related to DC microgrid

Is the Current War revived?

Benoît Bidaine, Gilles Geron, Philippe Ledent March 23, 2021

The Current War

- Early electricity distribution in XIXth century
- End of XIXth, opposition between Direct Current (DC) promoted by Thomas Edison and Alternating Current (AC) promoted by Nikola Tesla and George Westinghouse
- Duel won by AC

- Niagara falls hydroelectric power plant at Chicago 1893 World Exhibition
- High voltages achievable via transformers \rightarrow smaller line losses
- Some Edison's DC networks survived until the early XXIth century.
 - 4600 DC US customers in 1998
 - Lifts directly supplied by a DC network until 2007 in Manhattan

CE+T group offers electrical conversion solutions

for security of supply of critical applications

200+ employees

5 R&D and production sites Belgique (Wandre), Luxembourg, Chine, Inde and USA for energy management

Founded en 2017

Is the Current War revived?

Focusing on « private » distribution infrastructure, not public distribution or transport systems in particular

- What are the pros and cons for DC distribution?
- What are the specifics of DC distribution infrastructure?
- What are the new applications of DC distribution?

Part 1

Pros and cons

The drivers for DC back to business (1/2)

- Significant progress of equipment used for DC distribution, power electronics in particular
- More and more high-voltage DC circuits appear

Example: the ALEGrO project

- Underground HVDC link between Belgium and Germany
- 320kV, 1GW
- Commissioned on Nov 9, for 2020

https://www.elia.be/en/infrastructure-and-projects/infrastructure-projects/alegro

The drivers for DC back to business (2/2)

DC energy sources

DC-supplied equipement

Typical consumption of a commercial building

About electrical hazard...

- Generally speaking, at equal value, AC is more hazardous than DC
- AC frequency can yield
 - Muscle tetanization
 - Heart fibrillation

Voltage ranges

Domaines de tensions		Tensions nominales	
		Alternatif	Continu
Très basse tension	TBT	$U \le 50 V$	$U \le 120 V$
Basse tension (BT)	BTA	$50 V \le U \le 500 V$	$120 V \le U \le 750 V$
	BTB	$500 \text{ V} \le U \le 1000 \text{ V}$	$750 \text{ V} \le U \le 1500 \text{ V}$
Haute tension (HT)	HTA	$1000 \text{ V} \le U \le 50000 \text{ V}$	$1500 \text{ V} \le U \le 75000 \text{ V}$
	HTB	U > 50000 V	U > 75000 V

• But need for arc interruption in DC!

Human body effects of current depend on its nature, its value and the exposure duration

- No effect
- II. Small pain but no dangerous effect
- III. Muscular contraction and respiratory distress, reversible effects
- IV. Ventricular fibrillation, critical effects

Hence, as human body resistance amount at ~1500 Ω , no critical effects (zone III) for

- US 120-Vac low-voltage grid (80 mA)
- European 230-Vac low-voltage grid (153 mA) thanks to differential protections limiting exposure duration
- A 400-Vdc network (266 mA)

Part 2

Infrastructure

The right wire...

to supply a 1.2-kVA air conditioner

• from a car battery (12 V) ?

• from a low-voltage AC grid (230 V) ?

From a low-voltage DC grid (230 V) ?

→ 1.3 mm 20 times thinner

•

4 main examples of infrastructure choices

- Working voltages are much varied than with AC
- The number of conductors and the earthing system condition personal safety characteristics
- **Protections and connectors must be able to break current**
- **Converters** are used to stabilize the distribution circuit

but standards and regulations lack or remain conservative!

The resilience of electrical distribution systems require appropriate control strategies

AC public systems

- Objective: ensure equilibrium between controllable centralized production and uncontrollable consumption
- Solution: monitor frequency and adapt production

DC local systems and microgrids

- Objective: ensure equilibrium between uncontrollable distributed production and partially controllable consumption
- Solution: monitor voltage and transfer power from/to batteries

A passive, decentralized control of the distribution circuit mutualizes energy stocks

> Bat 1 Bat 2 Load I Load I Bat 1 I Bat 2 14A 12A 10A-8A 6A. 4A 2A 0A -2A--4A -6A--8A State of Charge Bat 2 State of Charge Bat 1 880m 840m 800m 760m-720m 680m 640m-600m-560m-520m-480m 440m[.] 30s 50s 60s 20s 40s 70s 80s 90s 100s 0s 10s

 \rightarrow Load supply and state-ofcharge balancing between the 2 **batteries**

e.g., with 1 load and 2 batteries

38

Part 3

New applications

5 examples of new « private » infrastructure applications of DC distribution to

- Mutualize energy sources reducing grid dependency in datacenters
- Supply distributed equipment of transportation infrastructure based on a limited number of public AC utility connections
- Minimize voltage drops in a distributed equipment supply system for telecommunication infrastructure
- Combine LED lighting supply
 and building management infrastructure
- Avoid successive conversions between DC sources and loads in a building

New telecommunication infrastructure rely on more and more distributed equipment

Technological evolution

- Higher frequency
- Shorter wavelength

	4G	5G
Frequency	6 GHz	30 to 300 GHz
Wavelength	Tens of cm	1 to 10 mm

Consequences

• Shorter range \rightarrow need for more antennas for same coverage

Waves fading through walls → need for both inside and outside antennas

A 5G infrastructure may involve 3 entities requiring power

A local 5G infrastructure can be efficiently powered by means of 3 entities

380-Vdc bus embedded into a hybrid cable 🖌 🚽 📥

POIIIEB

Voltage drops can be limited by multiplying the DC bus supply locations

Distance

Conclusion

Conclusion

- The breakthrough of Distributed Energy Resources (DER) paves the way for the creation of distributed microgrids at residential, commercial building or even district scales
- A DC microgrid provides several advantages
 - Higher efficiency
 - Simplified integration of DC sources and loads
 - No reactive power, nor frequency to synchronize with
- DC equipment must be selected carefully to ensure arc interruption and personal safety
- Standards under definition will enable to streamline DC systems and generalize them

For instance, not yet covered by Belgian General Regulation on Electrical Installations

CE+T contributes to the Walloon MIRaCCLE project aiming at deploying a pilot DC microgrid close to Liège

https://klinkenberg.be/miraccle/

POWERDALE

MIRaCCLE will enable to define the typical characteristics of an industrial DC microgrid

(`MRaccle

War revived or not, we have what's needed for peace!

Looking forward to learning about your energy and grid challenges!

Benoît Bidaine, <u>B.Bidaine@cet-energrid.com</u> Gilles Geron, <u>G.Geron@cet-power.com</u> Philippe Ledent, <u>P.Ledent@cet-energrid.com</u> <u>www.cet-power.com</u>, <u>www.cet-energrid.com</u>

